Prediction of wireless network connectivity using a Taylor Kriging approach
نویسندگان
چکیده
The research aim of this paper is to investigate the effectiveness of a new Kriging model which uses Taylor expansion to predict wireless network connectivity. Wireless network connectivity is measured by the strength of emitted signal power from the tower to the point in question. The prediction results are compared with those from the literature where an Ordinary Kriging model and a neural network are used to conduct the same prediction. Root mean squared error (RMSE) and maximum absolute relative error (MARE) show that the prediction results of the new Kriging model are much better than those obtained before with average differences from 51.56% to 85%. This study shows the promise of the new Kriging model to accurately estimate wireless signal strength.
منابع مشابه
Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors
Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...
متن کاملRepresenting a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors
Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAIP
دوره 3 شماره
صفحات -
تاریخ انتشار 2011